РСКД/Mathematica

Материал из Викитеки — свободной библиотеки
Перейти к навигации Перейти к поиску

Mathematica / Математика
Реальный словарь классических древностей (Фридрих Любкер, 1854 / Филологическое общество, 1885)
Brockhaus Lexikon.jpg Словник: Maccius — Myus. Источник: Реальный словарь классических древностей (1885), с. 837—838 ( РГБ · индекс ) • Список сокращений названий трудов античных авторов • Другие источники: OSN


Mathematĭca, τὰ μαθηματικά или μαθήματα, означает в известном смысле все вообще научные познания, в специальном же смысле такие, в которых форма науки впервые высказалась с наивозможною точностью, а именно математику. Первоначальное свое развитие и М. получила у греков, благодаря ионическим философам, а еще более благодаря пифагорейцам. Различного рода опыты, задачи и методы были заимствованы, конечно, с Востока, особенно от египтян, но научною обработкою М. обязана грекам. В арифметике особенно прославились Пифагор и после него Архит и Филолай; Пифагор же обогатил геометрию названною по его имени важною теоремою; ею же занимались Анаксагор и Гиппократ Хиосский (450 г. до Р. Х.), особенно последний, который нашел будто бы квадратуру круга (lunula) и старался решить пресловутую и занимавшую затем многих ученых древнего мира «Делосскую проблему» — найти способ к удвоению куба. Уже Архит рассматривал в своих лекциях стереометрические отношения, именно первую кривую двоякой кривизны, а Платон ввел в геометрию аналитический метод, равно как и учение о конических сечениях и геометрических точках; этим он настолько расширил математическую науку, что его ученики говорили о трансцендентной геометрии в противоположность к низшей геометрии. Вместе с Платоном и Архитом одновременно почти процветали Евдокс Книдский, Аристей, Менэхм (Μέναιχμος) и его брат Дейнострат (Δεινόστρατος), которые развили еще более учение о конических сечениях, а так называемая quadratix Дейнострата, открытая жившим в то же время Гиппием (Ἰππίας), стремится к решению задачи — разделить угол на три равные части и решить квадратуру круга. Эти подготовительные работы получают у Аристотеля дальнейшее развитие по отношению к объему и содержанию и разнообразному их применению к механике; наконец, благодаря трудам александрийских ученых, М. достигла той научной полноты, которой можно было достигнуть в древности. В частности, систематическая и методическая разработка арифметики удалась Евклиду; эту же часть М. обогатили своими исследованиями Архимед и Эратосфен. Особенно же прославился вышеупомянутый Евклид в геометрии, где знаменитые «Основы» (στοιχεῖα) доставили ему название «отца геометрии». Кроме него, Архимед, Аполлоний из Перги и живший позднее Диофант были главными математиками древних. Архимед решил квадратуру параболы, нашел отношение между окружностью и диаметром круга, между объемом шара и описанного около него цилиндра, определил содержания сфероид и вообще значительно расширил геометрический анализ. Аполлоний исследовал свойства сечений косого конуса и довел теорию конических сечений до высокой степени совершенства. Труды этих двух математиков обозначают самую блестящую эпоху геометрии у древних. Геометрическим способом решили «Делосскую проблему» Менэхм и Аполлоний, и именно посредством конических сечений, позднее Никомед (может быть, ок. 150 г. до Р. Х.) посредством изобретенной им конхоиды (раковинообразной кривой линии), Диокл (вероятно, в 6 в. от Р. Х.) посредством киссоиды (плющеобразной кривой). Гиппарх, величайший астроном в древности, был основателем необходимой ему для его астрономических исчислений плоской и сферической тригонометрии, дальнейшему развитию которой содействовали Гемин, Феодосий (может быть, ок. 50 г. до Р. Х.) и астроном Менелай (может быть, ок. 100 г. от Р. Х.). Единственное изложение плоской и сферической тригонометрии у древних находим мы в сочинении μαθηματικὴ σύνταξις, принадлежащем великому астроному Клавдию Птолемею (ок. 150 г. от Р. Х.). Из математиков позднейшего времени в древности следует упомянуть еще двух, Диофонта (между 160 и 360 гг. от Р. Х.), который занимался преимущественно так называемым неопределенным анализом, и Паппа, жившего в конце 4 в., который в своем «математическом сборнике» (μαθηματικαὶ συναγωγαί), собрал важнейшие открытия прежних математиков. Механикой долгое время занимались только практически, пока Архимед после различных напрасных опытов других ученых не установил для нее твердых теоретических оснований; посредством законов простых машин (рычага, блока и т. д.) и центра тяжести он положил начало механике твердых тел, а изложением своей гидростатической теории основал механику жидкостей. Из других ученых следует в особенности упомянуть Герона Александрийского (ок. 250 г. до Р. Х.), который, между прочим, изобрел названные по его имени приборы: Геронов фонтан, Геронов шар, эолипилу. Не только в Александрии, но и на острове Родосе, в Пергаме и особенно в Сиракузах процветала механика в практическом применении. Меньше знаем мы об успехах в оптике, так как сочинения, касающиеся ее, частью сомнительны, частью утрачены. Акустика была сперва указана Пифагором, позднее ею занимался Аристотель. У римлян М. не развивалась: эмпирический навык при разделении земель и при означении места для лагеря казался для них достаточным. Некоторые сведения по этой отрасли мы имеем в сочинении Гигина; кроме того, Варрон, Витрувий и Юлий Фронтин также известны как писатели по этой части.