Перейти к содержанию

ЭСБЕ/Кварц

Материал из Викитеки — свободной библиотеки

Кварц — минерал, один из самых распространенных в земной коре. Он всюду рассеян в виде примеси среди других минералов, входит в состав различных горных пород совместно с другими минералами; образует также и самостоятельные толщи. Очень часто встречается в прекрасно образованных кристаллах, которые имеют вид шестигранных призм с шестигранной пирамидой на конце. Обыкновенно развит один конец, другой же срастается с породой; изредка встречаются кристаллы, развитые с обоих концов. Кристаллическая система К. гексагональная, именно ее трапецоэдрическая тетартоэдрия; однако в большинстве случаев кристаллы кажутся полногранными. Господствующими формами являются (см. фиг. 1 и 2) призма 1-го рода (а) = ∞ R = (1010) и два ромбоэдра (положительный и отрицательный), взаимно дополняющие друг друга (p) = R = (1011) и (Z) — R = (0111); оба ромбоэдра обыкновенно развиты неодинаково; иногда отрицательный совершенно исчезает; но встречаются случаи равномерного их развития, тогда получается вид шестигранной пирамиды. Ромбоэдры (положительный и отрицательный) часто отличаются друг от друга не только степенью развития, но и совершенством плоскостей: плоскости полож. ромбоэдра более развиты, обыкновенно гладки и блестящи, у отрицательного же — матовы. Величина угла двух ромбоэдров в полярных ребрах — 133° 44′. Отношение осей — 1:1,0999. Плоскости призмы 1-го рода являются в полном числе, обыкновенно господствуют, реже развиты слабо; еще реже исчезают совершенно, тогда кристаллы получают пирамидальный вид. Самым характерным их признаком служит штриховатость, направленная перпендикулярно к ребрам призмы. Кроме названных форм, известно множество других, которые встречаются далеко не всегда; таковы: тригональная пирамида (S) + (2P2)/4 = (1121) и (S1) — (2P2)/4 = (2111) (см. фиг. 1 и 2); тригональный трапецоэдр также двух положений: х = +(6Р6/5)/4 = (5101) и -(6Р6/5)/4 = (6151) (см. фиг. 1 и 2); тригональный трапецоэдр с параметрами [4Р4/3)/4](3141); множество ромбоэдров 1-го рода: 3R = (3031), 4R = (4041), -11R = (0.11.11.1) и др. Тупейшие ромбоэдры наблюдаются редко; точно так же редко встречаются плоскости тригональной призмы. Плоскости базопинакоида представляют величайшую редкость и даже не установлены точно. Из всех названных форм самыми характерными, указывающими на тетартоэдрический характер К., являются тригональные пирамиды и тригональные трапецоэдры. Плоскости тригональной пирамиды имеют ромбоидальную форму; в простых кристаллах лежат попеременно, притупляя четырехгранные углы, образованные плоскостями призмы и ромбоэдров; в двойниковых же кристаллах могут находиться на всех углах. Они обыкновенно несут на себе тонкие штрихи, идущие параллельно комбинационному ребру плоскости положительного ромбоэдра с плоскостью тригональной пирамиды. Этим признаком с удобством можно пользоваться для определения положительного ромбоэдра. Если поставить кристалл К. таким образом, чтобы его главная ось (идущая параллельно граням призмы) стояла вертикально, а плоскость положительного ромбоэдра была обращена к наблюдателю, то плоскости тригональной пирамиды будут находиться по отношению к нему или с правой, или же с левой стороны под ромбоэдром; отсюда различают правые (фиг. 1) и левые (фиг. 2) кристаллы К.

Плоскости трапецоэдра в случае совместного нахождения с тригональною пирамидою имеют трапецеидальную форму и всегда располагаются под плоскостями тригональной пирамиды, а при ее отсутствии — под положительным ромбоэдром, или с правой, или с левой стороны; на двойниках они могут находиться на обеих сторонах (см. фиг. 3). Положением этих плоскостей также можно пользоваться для отличения положительного ромбоэдра от отрицательного, так как под последним почти никогда не наблюдается подобных граней. Двойники кварца встречаются весьма часто, чаще, нежели простые, особенно с параллельными главными осями; весьма нередко, по-видимому, простые кристаллы при ближайшем исследовании оказываются двойниками. Двойники К. образованы бывают по различным законам:

1) Наиболее часто встречается случай, когда двойниковою осью служит главная ось, причем неделимые прорастают друг друга. Этот закон может быть выражен и другим способом: двойниковою плоскостью служит плоскость призмы, а двойниковою осью линия, к ней перпендикулярная. По этому закону могут срастаться: а) неделимые одного характера (или оба правые, или оба левые) — это дофинейские двойники, очень похожие на простые кристаллы, от которых можно отличить их только в том случае, когда присутствуют плоскости S и X или же когда существует различие в блеске плоскостей обоих ромбоэдров Р и Z. Если же ни того, ни другого нет, то обнаружить их двойниковое строение могут только пироэлектрические явления (см. ниже); — б) неделимые различного характера (правое с левым), срастаясь, образуют так назыв. бразилианские (бразильские) двойники, в которых трапецоидальные плоскости (х) распределяются так. образ., что получается кажущийся скаленоэдр (см. фиг. 3). Иногда простые неделимые прорастают друг друга весьма сложным образом; также располагаются перемежающимися слоями, параллельными граням основного ромбоэдра (чаще всего это наблюдается на метистах).

2) Двойники с наклонными осями встречаются реже первых: двойниковою плоскостью и плоскостью срастания служит пирамида второго рода Р2, вследствие чего главные оси обоих неделимых являются наклоненными друг к другу под углом в 84° 33′.

На К. наблюдаются случаи закономерного срастания с другими минералами, напр. с полевым шпатом (письменный гранит) и известковым шпатом. Спайность у К. едва заметна и чаще всего обнаруживается (обыкновенно случайно, при нагревании или разбивании) параллельно плоскостям основного ромбоэдра (Р). Излом раковистый, в некоторых разностях, особенно в сплошных и плотных, занозистый, неровный и пр. Хрупок; тв. = 7. Уд. в. = 2,5… 2,8. Наиболее чистые разности (горный хрусталь) имеют уд. в. 2,65… 2,66. Блеск стеклянный, иногда жирный. Прозрачность в различной степени. Бесцветен или же окрашен в различные оттенки всевозможных цветов, иногда в разных участках одного и того же кристалла. Оптически одноосен; двойное лучепреломление (см.) слабое, положительное: ω = 1,54090 ε = 1,54990 (для линии В). Особенный интерес в оптическом отношении представляет круговая, или вращательная, поляризация (см. — Вращение плоскости поляризации) в кварце. Она проявляется здесь с большою ясностью и достигает 15° 37′ 40″ для линии В спектра в пластинке толщиною в 1 мм. Характер вращения находится в связи с характером тетартоэдрических форм: кристаллы с правыми тригональными пирамидами и правыми тригональными трапецоэдрами вращают плоскость поляризации вправо, в противном случае наоборот. Если слои левого и правого К. лежат один на другом, то появляются так называемые спирали Эри, наблюдаемые иногда (именно в бразилианских двойниках) на кристаллах К. и указывающие, таким образом, на двойниковое срастание разнородных в оптическом отношении неделимых. К. обнаруживает, также в высокой степени, явления пироэлектричества (см.), которые, так же как и световые, находятся в связи с его кристаллографическими особенностями. В простых кристаллах пироэлектричество распределяется таким образом, что у правых кристаллов (о постановке было сказано выше) правые ребра призмы, а у левых — левые ребра при охлаждении электризуются отрицательно, промежуточные же получают электричество положительное, причем наибольшего напряжения электрическое состояние достигает на самых ребрах, по мере же удаления от них оно ослабевает. Таким образом, вся поверхность кристалла может быть разделена на 6 электрических полос, идущих параллельно вертикальной оси, разделенных нейтральными поясами и представляющих чередование положительного электричества с отрицательным. Наглядное доказательство подобного распределения дает метод Кундта. В двойниковых кристаллах распределение электричества может быть весьма сложным в зависимости от сложности двойникового строения. Химический состав чистейшей разновидности: SiO2 (46,7% силиция и 53,3 кислорода), но нередко содержит примеси Fe2O3, Al2О3, Mn2О3, MgO, CaO и органических веществ. Эти примеси, а также газы, стекло и жидкости, главным образом вода и угольная кислота, часто выполняют в К. поры и пустоты. Весьма часто в К. встречаются вростки кристаллов различных минералов: хлорита, эпидота, рутила, железного блеска, турмалина, роговой обманки и др. Перед паяльной трубкой К. не плавится, но в пламени гремучего газа плавится легко; после плавления он застывает в аморфную массу, причем удельный вес его падает до 2,2 (как у опала). Щелочи на К. действуют чрезвычайно слабо; в кислотах совершенно нерастворим, и только плавиковая кислота разъедает его весьма сильно. Ею пользуются, между прочим, для получения фигур вытравливания, которые своим несимметрическим расположением подтверждают тетартоэдрический. характер К. После плавления К. относится к реагентам подобно опалу. С содою сплавляется с шипением в бесцветное прозрачное стекло. Атмосферные деятели не оказывают на К. почти никакого влияния: точно так же вследствие значительной твердости он весьма мало подвергается механическим действиям. Поэтому при выветривании К.-содержащих пород, когда другие минеральные составные части совершенно изменяются и разрушаются, К. остается в виде свободных зерен — кварцевого песка. В настоящее время К. получен искусственным путем при различных условиях. При нагревании аморфной кремневой кислоты в воде при высоком давлении (Сенармон), при действии перегретого водяного пара на стекло (Добрэ) и, наконец, плавлением (Готфейль). В природе К. происходит различными путями; образование из расплавленных масс доказывается нахождением его в изверженных горных породах. Выделение из горячих растворов наблюдается в некоторых горячих источниках.

Гораздо распространеннее образование кварца из водных растворов при обыкновенной температуре, что доказывается нахождением его в бурых углях, окаменелых деревьях, в полостях раковин, а также на древних бронзовых предметах. Растворимость К. в воде доказывается многочисленными псевдоморфозами, которые он образует по различным минералам (известковому шпату, гипсу, бариту, каменной соли, плавиковому шпату, авгиту, бериллу, десмину и др.). Сам же К. превращается весьма редко; известны весьма немногие псевдоморфозы по К., таков псевдоморфоз жировика по К. В ясно образованных кристаллах, обыкновенно соединенных в друзы, К. встречается в пустотах и трещинах различных горных пород, как то: известняков, гипса, порфира, трахита, гранита, гнейса, кристаллических сланцев и др. Гораздо чаще К. является в сплошном виде, образуя нередко большие массы. В виде отдельных зерен он входит в состав многих весьма распространенных горных пород — гранитов, гнейсов, слюдяных сланцев, кварцевого порфира, кварцевого трахита и др. Вследствие вываривания названных пород К. освобождается и служит материалом для образования обломочных горных пород — песков, песчаников, суглинков и пр. По совершенству образования, строению, чистоте и окраске различают следующие виды К.:

Горный хрусталь совершенно бесцветен и водяно-прозрачен. Отличается хорошо образованными кристаллами с разнообразными формами. Встречается обыкновенно в трещинах и пустотах силикатовых пород на Урале (Мурзинка, Невьянский завод), Кавказа (Казбек), Вост. Сибири; в Альпах Тироля, Швейцарии, Французских Альпах и во многих других горных местностях. Иногда пустоты, содержащие в себе кристаллы горного хрусталя, достигают значительных размеров и называются хрустальными погребами. Кроме силикатовых пород, горный хрусталь встречается также в пустотах мрамора (Kappapa); вросшие кристаллы встречаются в некоторых мергелях и известняках, напр. в Венгрии (Мармарошский комитат), где они известны под именем мармарошских алмазов ; в штате Нью-Йорк (Геркимер и К°), где они заключают иногда зерна смолы, и пр. Размеры кристаллов горного хрусталя бывают очень велики, напр. известны обломки кристаллов с о-ва Мадагаскара, достигающие до 8 м в обхвате. В древности горный хрусталь употреблялся для приготовления разных предметов роскоши и ценился дороже, нежели теперь. Особенно чистые экземпляры в настоящее время применяются для оптических приборов, нормальных разновесов и пр. дымчатый горный хрусталь, или раухтопаз, прозрачен, окрашен органическими веществами в бурый цвет, исчезающий при прокаливании. Интенсивность окраски различна. Встречается при тех же условиях и даже в тех же месторождениях, как и горный хрусталь. В этом отношении пользуются известностью хрустальные погреба в кантоне Ури; деревня Алабашка на Урале и д. Мякотиха на Алтае. Кристаллы черного цвета называются морионами, а винно-желтого — цитринами.

Аметист — прозрачный К., окрашенный в различные оттенки фиолетового цвета. Окраска часто весьма неравномерна; иногда окрашенные пластинки чередуются с бесцветными. Более густо окрашенные участки обнаруживают двуосный характер, который, однако, исчезает при нагревании до 250° Ц., при чем теряется также и фиолетовая окраска — аметист делается желтоватым. Такой обожженный аметист часто продается за настоящий топаз, иногда — за цитрин. Густо и равномерно окрашенные аметисты считаются (равно как раухтопаз и горный хрусталь) драгоценными камнями 4 и 5 классов. Аметист встречается в пустотах миндалевидных вулканических пород, напр. в мелафирах Наеталя близ Оберштейна, в Бразилии и Урагвае; в жильных месторождениях близ Шемница (Венгрия), д. Липовой (Урал), на Камчатке и в валунах Волк-острова (Онежское озеро. См. также ст. Аметист).

Обыкновенный К. — непрозрачен или просвечивает. От присутствия примесей окрашен в белый, красный, бурый, желтый, зеленый, синий и другие цвета. Он является и в хорошо образованных кристаллах, и в виде зерен и, наконец, сплошным. Число месторождений очень велико. Зерна его входят в состав гранитов, гнейсов, порфиров и др. Из них же состоят пески, песчаники и мн. др. обломочные породы. Он также выполняет трещины и пустоты в различных силикатовых породах, образуя жилы, достигающие иногда весьма большой мощности. Для некоторых разновидностей обыкновенных К. существуют особые названия: жирный К. — отличается жирным блеском; молочный К. — молочно-белого цвета (Гонштейн близ Пирна, Гренландия, Финляндия): розовый К. (Боденмайс в Баварии, Финляндия, Урал, Алтай и др.); сидерит, или сафировый К. — синего цвета (Зальцбург); компостельский рубин — красного цвета (Испания); празем — луково-зеленого цвета (Саксония, Урал, Карберген в Южн. Африке); жилковатый К. представляет параллельно-жилковатое строение. В некоторых случаях после шлифовки получает красивый шелковистый световой отлив бурого цвета; употребляется на украшения и называется тигровым глазом. Такой К. добывается на мысе Доброй Надежды. Кошачий глаз — желтого или зеленого цвета, со множеством параллельно расположенных волокон асбеста или же тонких трубочек. При выпуклой шлифовке также приобретает красивый световой отлив и употребляется на украшения (см. также Драгоценные камни). Лучшие месторождения на Цейлоне; встречается также на Гарце, в Фихтельгебирге, на Урале (Златоустовский округ).

Роговой камень, или роговик — желтого, красного, бурого и серого цвета плотный К. с характерным занозистым изломом, плоскости которого слабо блестят или матовы. Часто выполняет жилы в рудных месторождениях. Образует псевдоморфозы, особенно по известковому и плавиковому шпату, бариту, также служит окаменяющим веществом животных и растений. Иногда встречается в виде залежей среди осадочных пород, особенно мергелей. Роговик, сильно окрашенный окислами железа в красный, желтый, бурый и др. цвета, называется яшмой. По рисункам они разделяются на одноцветные и пестрые (ленточная, брекчиевидная, пудинговая и др.). Яшмы употребляются для приготовления ваз, обделки столов, каминов и проч. Месторождения многочленны (Урал, Алтай). К. чрезвычайно важный и полезный минерал: он образует важную составную часть (скелет) различных почв, от которой зависят их физические свойства; в виде песчаников употребляется для построек, точильных камней, жерновов и проч. Чистые разновидности К. служат для фабрикации стекла.

П. З.