Наклонная плоскость — плоскость, поставленная наклонно к горизонтальному направлению и употребляемая для поднятия тяжестей на высоту. Свойством Н. плоскости облегчать поднятие тяжестей люди пользовались уже с давних пор, но точное изучение сил, действующих на груз, находящийся на Н. плоскости, начато было только в 1586 г. Стевином в его «Трактате о статике». Возьмем твердое тело (фиг. 1), ограниченное сверху двумя плоскостями AB и BC, причем AB короткая и поэтому поднимается круто, плоскость же BC длинная и потому отлогая.
Перекинем через такое тело тяжелую цепь, концы которой связаны один с другим; тогда цепь расположится, как это показано на фиг. 1. Часть цепи AMC можно рассматривать как уравновешенную точно таким образом, как будто она была закреплена в A и C. Остаются части AB и BC, взаимно уравновешивающиеся. Часть AB представляет собой груз во столько раз меньший сравнительно с грузом, представляемым частью BC, во сколько AB меньше BC. Если грузы, пропорциональные сторонам AB и BC, взаимно уравновешиваются, то равные между собой грузы уравновешиваются на Н. плоскостях силами, обратно пропорциональными сторонам AB и BC. Итак, силы, заставляющие груз скользить с Н. плоскости, т. е. действующие параллельно Н. плоскости, при той же высоте h, обратно пропорциональны длине Н. плоскости. Но сила, действующая на груз, прислоненный к вертикальной плоскости, равна весу P груза. Следовательно (фиг. 2), сила Q, действующая на тело, лежащее на Н. плоскости параллельно наклону этой плоскости, относится к весу этого тела как высота h к длине плоскости BC.
Получается формула . Чтобы поднять груз вертикально, нужно преодолеть его вес P. Чтобы втащить груз на ту же высоту по Н. плоскости, нужно преодолеть силу Q, во столько раз меньшую сравнительно с P, во сколько катет h меньше гипотенузы BC. В настоящее время этот закон Н. плоскостей доказывается разложением (фиг. 3) веса тела на две силы, из которых N перпендикулярна в Н. плоскости и вследствие этого только прижимает тело к плоскости; другая же сила Q параллельна наклону плоскости.
Из прямоугольного треугольника PGQ получается:
(1).
Отсюда получается .
В действительности еще является сила трения, пропорциональная давлению N и равная , где φ есть тот самый угол, до которого надо поднять Н. плоскость, чтобы лежащий на ней груз начал с неё сползать. Этот угол называется углом трения и зависит от того, из каких материалов сделаны Н. плоскость и соприкасающаяся с ней поверхность лежащего на ней груза. Величина tgφ называется коэффициентом трения и дается для различных материалов в особых таблицах (см. Трение). Сила S, потребная для того, чтобы поднять тело по Н. плоскости, должна преодолеть как силу трения, так и силу Q. Поэтому
(2).
Силе же M, потребной для того, чтобы совлечь тело вниз по плоскости, будет помогать и сила Q. Следовательно:
(3).
Если по этой формуле величина M выйдет отрицательной, то абсолютная величина этого отрицательного количества представит собою силу, потребную для удержания груза на месте так, чтобы он не скользил вниз по плоскости. Применим эти формулы к следующему примеру. Нужно втащить деревянный ящик в 10 пудов весом по деревянной доске, составляющей с горизонтальным направлением угол в 30°; sin 30° = 1/2 и cos 30° составляет около 0,87. Коэффициент tgφ трения дерева по дереву равен 1/2. Вставляя эти величины в формулу (2), получим величину сил S = 9,35 пуда. Для того чтобы определить силу M, потребную для удержания ящика от сползания с этой Н. плоскости, нужно вставить те же величины в формулу (3). Получим М = —0,65 пуда = —26 фунтов. Такая значительная разница между S и М станет понятной, если заметим, что для передвижения ящика по горизонтальной доске требуется сила, вычисляемая по формуле (1) при α = 0 и равная 5 пудам, между тем как для удержания ящика на горизонтальной доске не требуется никакой силы. В истории механики Н. плоскость играла весьма видную роль. Один из крупнейших шагов в этой науке сделан был Ньютоном, когда он открыл всемирное тяготение; этому открытию предшествовало предварительное изучение, еще Галилеем, законов падения тел, для чего он пользовался Н. плоскостью. Изменяя наклон α плоскости, можно заставлять падать (катиться) по ней одно и то же тело под действием различных сил Q, и при этом при малых α тело падает достаточно медленно, чтобы можно было за ним следить. Галилей и применял к изучению падения именно Н. плоскость, но он же изучал законы колебания маятника, служащего лучшим орудием для изучения законов тяготения. Н. плоскость употребляется также для изучения законов трения (см. Трение).