Рефрактор — так называется зрительная преломляющая труба (см. Оптические инструменты), установленная параллактически, снабженная часовым механизмом и окулярным микрометром. При параллактической установке труба имеет две оси вращения, одна из них — ось прямых восхождений или полярная ось — расположена параллельно оси Земли, т. е. находится в плоскости меридиана и составляет с горизонтом угол, равный широте места. Другая ось (ось склонений) перпендикулярна к первой. При вращении инструмента на первой оси объектив встречает звезды, расположенные на одной и той же параллели, при вращении вокруг второй — звезды, расположенные на одном круге склонений (см. Сферические координаты); с помощью этих вращений объектив может быть направлен в какую угодно точку неба. Р. значительных размеров, вследствие малости поля зрения, очень трудно навести от руки даже на яркую звезду, поэтому установка его производится при помощи кругов, деленных на градусы и минуты и насаженных на упомянутые оси: один круг указывает часовой угол светила, другой его склонение. При больших инструментах эти круги снабжены микрометрами для точного отсчитывания, а следовательно для непосредственного определения места светила на небе (см. Экваториал), но этот способ не употребляется, так как неперпендикулярность осей и другие инструментальные ошибки (например, изгиб) искажают эти отсчеты, притом всегда можно наблюдаемое светило «связать» с ближайшими звездами, положение которых уже известно, или можно его определить с помощью меридианных кругов. К таким дифференциальным наблюдениям и сводятся измерения Р. Микрометры у кругов Р. служат для исследования правильности установки Р. и его неподвижности. Рядом с главной трубой Р. помещается так называемый искатель: трубка с большим полем зрения. Сначала находят небесный объект в искатель и устанавливают Р. так, чтобы светило было на перекрестье натянутых в фокальной плоскости искателя нитей; тогда, вследствие параллельности оптических осей труб, светило видно и в главную трубу. Часовой механизм действует с помощью бесконечного винта и зубчатки на полярную ось и рассчитан так, что вращает на 360° всю трубу вокруг этой оси в звездные сутки: объектив, так сказать, скользит по параллели вслед за звездой и она кажется неподвижной в поле зрения. Иногда можно изменять ход часового механизма, чтобы труба следила за светилами, изменяющими свое положение среди звезд (Луна, планеты, кометы). Для этой же цели были предложены монтировки с тремя осями вращения. Микрометр при окуляре обыкновенно нитяной (см. Микрометр); им измеряется расстояние и угол положения (позиционный угол), составленный линией, проходящей через обе звезды с кругом склонений, проведенным через одну из них. Если звезды не видны зараз в поле зрения, то, при небольшой разности склонений, остановив часовой механизм и наблюдая последовательно бегущие звезды, можно измерять разности прямых восхождений и склонений. Для точной установки Р. на звезду служат зажимы при кругах и микрометрические ключи по склонению и часовому углу; у больших Р., кроме того, имеется особый микрометрический винт, двигающий всю коробку микрометра. При ночных наблюдениях одна лампа с помощью системы призм и зеркал освещает нити микрометра, отсчеты кругов склонений и часовых углов, отсчеты позиционного круга и винта микрометра. Освещение поля зрения может быть двоякое — или темные нити на светлом фоне, или светлые на темном — последнее необходимо при слабых звездах. Вместо нитяного иногда употребляется микрометр с двойным изображением, а также кольцевой микрометр (см.). При сколько-нибудь значительных размерах Р., наблюдателю, в зависимости от положения светила на небе, приходится пользоваться различными подъемными приспособлениями. Чаще (например, в Пулкове, где труба большого Р. имеет 14 м длины) для этого служат кресла на блоках с противовесами, движущиеся по наклонной зубчатке, причем с помощью канатов наблюдатель сам может перемещать кресло по высоте и в стороны.
Иногда с помощью гидравлических приспособлений подымается вслед за окуляром Р. весь пол залы (например, в обсерваториях Лика, Йеркеса; в этой последней пол имеет 75 футов в диаметре и может подыматься на 22 фута). В новейшее время появился новый тип Р., так называемый équatorial coudé (системы Loewy). Труба Р. состоит из двух частей; то, что обыкновенно представляет нижнюю половину, служит полярной осью, другая прикреплена под прямым углом. В их пересечении — плоское зеркало, другое зеркало помещено перед объективом. Вращение второй половины трубы и второго зеркала позволяет направлять лучи какого угодно светила к окуляру, надетому на конец полярной оси. Таким образом наблюдатель никогда не меняет своего положения, что не только крайне удобно, но и выгодно для однородности наблюдений. Однако, введение двух зеркал, которые, поглощая много света, могут, кроме того, искажать изображения и быстро тускнеть, представляет существенный недостаток таких инструментов.
Прежде считалась типом обсерватории та, где имеются меридианный круг и рефрактор. В настоящее время задачи Р., сначала благодаря улучшениям гелиометров, а затем, в особенности, благодаря развивающейся все более и более астрофотографии, очень сузились. Главными работами для Р. остаются измерения двойных звезд, зарисовывание пятен на дисках больших планет и наблюдения малых планет, комет и слабых спутников планет.
Список наибольших рефракторов, с объективами от 25 дюймов:
Отверстие объектива, в дюймах |
Фокусное расстояние, в футах |
Обсерватория | Объектив | Монтировка | Год установки |
---|---|---|---|---|---|
40,0 | 62,0 | Йеркес (Уинсконсин) | А. Кларк | Варнер и Сваси | 1897 |
36,0 | 57,8 | Лика обс. (Калифорния) | А. Кларк | Варнер и Сваси | 1888 |
32,5 | 53,0 | Meudon (близ Парижа) | бр. Анри | Готье | 1897 |
31,1 | 39,4 | Потсдам | Штейнгейль | Репсольд | в работе |
30,3 | 52,6 | Ницца, обс. Бишофсгейма | бр. Анри | Готье | 1889 |
30,0 | 42,0 | Пулково | А. Кларк | Репсольд | 1885 |
28,9 | 42,0 | Париж | Мартен | Эйхенс | 1889 |
28,0 | 28,0 | Гринич | Грубб | Рансом и Симс | 1894 |
27,0 | 34,0 | Вена | Грубб | Грубб | 1878 |
26,0 | 32,5 | Вашингтон | А. Кларк | Варнер и Сваси | 1871 |
26,0 | 32,5 | Обс. МакКормика (Виргиния) | А. Кларк | Варнер и Сваси | 1874 |
25,0 | 30,0 | Кембридж (подарок Нюаля) | Т. Кук и сын | 1868 |
Быть может современный тип Р. доведен уже до наибольших возможных размеров. Громадный объектив Йеркеса деформируется от собственной тяжести. Вообще достоинство Р. не состоит в том что видно, но как видно и что можно измерить. Кроме количества света и величины разрешающей силы, важнейшую роль играет качество изображений, которое дает объектив. Притом, чем больше объектив, тем лучших климатических и атмосферических условий он требует. При некоторых наблюдениях полезно даже уменьшать диафрагмами отверстие объектива. Чечевицы больших размеров шлифуются частями и может случиться, что при закрывании части объектива изображения улучшатся. Чем больше объектив и чем лучшие он дает изображения, тем сильнее окуляры можно употреблять. Но очень сильные окуляры употребляются крайне редко. При Пулковском большом рефракторе наибольшее увеличение — 1500 раз, обыкновенно же употребляется увеличение в 500 или 600 раз. Как примеры разрешающей силы (см.) известны случаи измерения расстояния двойных звезд менее 0,1″, но, вообще говоря, расстояния до 0,3″ подлежат только оценке и при более тесных звездах можно считать подлежащим измерению только позиционный угол. Шкала величин звезд ниже 10-й еще совершенно условна и субъективна. Пулковскими наблюдателями принято считать, что в 15-дюймовый рефрактор последние видимые звезды — 14-ой величины, а в 30-дюймовый Р. — 15-ой величины. По Гершелеву обозначению — это были бы 22—25 величины.
Оптическая часть рефрактора, т. е. объективы и окуляры — см. Оптические приборы.
К изложенному там можно еще добавить, что в самое последнее время (1898 г.) заводу Цейса удалось выработать тип астрономического объектива с чрезвычайно совершенной ахроматизацией, и что к списку больших объективов можно еще присоединить объектив, изготовленный Готье (Gautier) для парижской выставки 1900 года. Этот объектив, диаметром 125 стм с фокусным расстоянием в 60 м, будет вделан в неподвижную горизонтальную трубу, и лучи света от исследуемых небесных светил будут направляться в него при помощи гелиостата (см.) со стеклянным посеребренным зеркалом в 2 м диаметром (вес зеркала 3600 кг).